Universal Coefficient Theorem in Triangulated Categories

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal coe cient theorem in triangulated categories

We consider a homology theory h : T ! A on a triangulated category T with values in a graded abelian category A . If the functor h re ects isomorphisms, is full and is such that for any object x in A there is an object X in T with an isomorphism between h(X) and x, we prove that A is a hereditary abelian category, all idempotents in T split and the kernel of h is a square zero ideal which as a ...

متن کامل

Objects in Triangulated Categories

We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...

متن کامل

Rouquier’s Cocovering Theorem and Well-generated Triangulated Categories

We study cocoverings of triangulated categories, in the sense of Rouquier, and prove that for any regular cardinal α the condition of α-compactness, in the sense of Neeman, is local with respect to such cocoverings. This was established for ordinary compactness by Rouquier. Our result yields a new technique for proving that a given triangulated category is well-generated. As an application we d...

متن کامل

A Universal Coefficient Theorem for Gauss’s Lemma

We shall prove a version of Gauß’s Lemma that recursively constructs polynomials {ck}k=0,...,m+n in Z[ai, Ai, bj , Bj ]i=0,...,m, j=0,...,n, of degree at most ( m+n n ) , such that whenever ∑ k CkX k = ∑ i AiX i · ∑ j BjX j and 1 = ∑

متن کامل

Localizations in Triangulated Categories and Model Categories

Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebras and Representation Theory

سال: 2007

ISSN: 1386-923X,1572-9079

DOI: 10.1007/s10468-007-9077-y